Submission No: 187 Not Here Not Anywhere is a nationwide, grassroots, non-partisan group campaigning to end fossil fuel exploration and the development of new fossil fuel infrastructure in Ireland. We advocate for a just transition to renewable energy systems both here and around the world. As part of the Climate Action Charter, Clare County Council is committed to driving forward meaningful climate action. This encompasses processes for carbon-proofing major decisions, programmes and projects, including investments in transport and energy infrastructure. Not Here Not Anywhere makes the following recommendations. ## Fossil fuel e.g. infrastructure # Impacts of Fossil Gas Projects Research states that if we are to keep global temperature rise below 1.5°C and avoid catastrophic climate change, fossil gas must be phased out of the energy mix in Europe by 2035 {i}, discrediting claims that gas is a "transition fuel" in the transition to a decarbonised economy {ii}{iii}. Research also states that we can't develop any new fossil fuel infrastructure from 2019 onwards if we are to have a 64% chance of limiting temperature rise to less than 1.5°C {iv}. Currently, 69% of all gas produced in the US and imported to Europe as Liquefied Natural Gas (LNG) is sourced through hydraulic fracturing {v}. New LNG exports will super-charge additional fracking, as 80% of the increased exports will come from new, i.e, fracked, wells {vi}. Recent research shows that this is 40% more damaging to the climate than coal {vii}. The lifespan of a project like LNG is at least 30 years which would increase our dependence on dirty fossil fuels and impinge on the development of renewable energy projects {viii}. ## **Energy Security and LNG** New gas infrastructure is not required for energy security. A 2020 study by leading independent consultancy Artelys concluded that "existing EU gas infrastructure is sufficiently capable of meeting a variety of future gas demand scenarios in the EU28, even in the event of extreme supply disruption cases" (ix). The European body of gas network operators, ENTSO-G, in its 2017 Security of Supply Review, found that Ireland and the UK would suffer no curtailment in gas supply faced with a variety of supply disruption scenarios (x). Historically, the UK has provided most of Ireland's gas supply, and Ervia states that in the UK "there is ample import capacity over and above demand" (xi). Demand for gas in the UK has decreased by a fifth since 2004 and gas-fired electricity generation is expected to drop by 40% by 2025 (xii). This is due to the existing over-capacity of the EU gas grid; gas import infrastructures have import capacity 200% higher than what Europe actually imports. #### Recommendations: - The County Development Plan should ensure a rapid phasing out of all fossil fuels including gas. - Ban the development of LNG projects within the county development plan - The County Development Plan should not allow the expansion of the gas grid. • The County Development Plan should ban fracked gas in its energy mix. # **Other Fossil Fuel Infrastructure** New fossil fuel infrastructure or upgrades to existing infrastructure should be consistent with Ireland's fair share net cumulative carbon dioxide (CO2) quota in line with the Paris agreement or future equivalent {xiv}. #### Recommendations: All-new large scale fossil fuel infrastructure projects are mandated to undertake climate impact assessment to ensure they are consistent with Ireland's fair share net cumulative carbon dioxide (CO2) quota in line with the Paris agreement or future equivalent ## **Data Centres** Eirgrid estimates that demand from data centres could account for up to 36% of Ireland's electricity demand by 2030, along with 75% of new electricity demand growth (Eirgrid, 2017:30) {xvi}. The Irish Academy of Engineering predicts that data centre development will add at least 1.5 million tonnes to Ireland's carbon emissions by 2030, a 13% increase on current electricity sector emissions, and will require an investment of €9 billion by 2027{xvii}. For example, if Amazon's eight centre project in Mulhuddart, Dublin 15, is realised, by 2026 it would use c. 4.4% per cent of the State's entire energy capacity, the equivalent of Galway city, but employ only 30 people post-construction, largely in facility maintenance {xviii}. The Apple data centre proposed for Athenry, Co. Galway, would ultimately use over 8% of the national capacity, more than the daily entire usage of Dublin, and would require 144 diesel generators as back-up {xix}. The government has acknowledged that "data centres pose considerable challenges to the future planning and operation of Ireland's power system" {xx}. These challenges include higher electricity costs for consumers {xxi}. The Danish Council on Climate Change recommended in April 2019 that the Danish government legally binds data centre owners and developers to contributing to the infrastructure required to supply the centres with renewable energy, such as wind and solar farms {xxii}. Currently, many companies claim to operate data centres powered by 100% renewable energy. However, the energy is largely sourced indirectly through Renewable Energy Certificates or Purchase Power Agreements {xxiii}, which means that the energy is sourced from the grid, which in Ireland is 69% fossil fuel-powered {xxiv}. If we continue to allow companies to virtually purchase clean energy where it is cheapest to create, while actually using and increasing demand for dirty energy in Ireland, we allow them to profit while our real emissions continue to rise. It is crucial therefore that data centres are powered directly by onsite renewable energy generation such as rooftop solar farms or new offsite generation such as offshore wind or solar farms. Data Centers also generate large quantities of waste heat which could be utilised in district heating systems {xxv}. #### Recommendations: - New data centres must be powered by onsite or new off site renewable energy, with existing centres required to transition rapidly to onsite or new off site renewables. - Where technically possible, heat recovered from Data Centres should be utilised for district heating systems. ## **Public Participation and People-led Policy** Throughout the lifetime of this county development plan Ireland's transition to a low carbon society is entering its most crucial decade. It's vital that it should be centred around providing people and communities with clean, affordable and reliable energy. The best and indeed only way to do so is to ensure citizen participation at all levels and stages of the energy transition. There are many different ways in which people can participate in governance, ranging from informing to consultation to partnership, to citizen control, whereby community members control the process (Armstein, 1969) {xxvi}. While all of these methods of participation are useful and valid at different stages of policymaking e.g. informing and consulting is more appropriate than citizen control at the stage of technical impact assessments, different forms of participation should be incorporated into major decisions such as energy infrastructure projects to create a thoroughly participative process. Ideally, there should be citizen participation in the design of the participatory process itself, for example through focus groups or workshops which feed in directly to sub-national and national policymaking. Community participation and ownership has proved important for public acceptance of the energy transition in countries where the transition is more advanced than in Ireland. For example, in Germany, 70% of the tax paid by wind turbine operators goes directly to the municipality where the turbines are based. In Denmark, taxes on energy go into funds to subsidise local initiatives for environmental improvement and community generation. Denmark also requires that local communities have a 20% share in onshore or near-shore wind turbines. Ownership measures like this are shown to increase community acceptance of energy transition infrastructure, and can take the form of individual shares in an energy project, community ownership of part of the infrastructure, or joint ventures between communities and developers {xxvii}. Although, due to Clare County Council's geographical location and population density, certain renewable energy would not be suitable within the local authority region, there are still many renewable energy projects that with the support of Clare County Council, can be developed. There are numerous urban renewable energy exemplar projects around Europe, such as the Edinburgh Community Solar Co-operative, which empower the public to be part of the transition to a low carbon society {xxviii}. ## Recommendations: - Outside the development of this plan, the council should lead annual local climate dialogues which serve to inform communities about the ongoing transition to a low carbon society and seek their opinions, ideas and consent. - The Climate Action and Environment office within the council must be adequately resourced, publicised and staffed. These offices should work closely with local communities to improve education and access to information around environmental issues, proactively engage in consultations and participatory processes which allow local people to have a say in the energy transition in their area. - Wherever practically possible, participatory processes should be designed in a participatory way, with input from representatives of all groups who are expected to take part in the participatory process. - Special outreach efforts must be made to include disadvantaged or marginalised groups in participatory processes. Those running participatory processes should keep a detailed record of the participation of marginalised groups and of best practices that serve to increase this participation. - Support and establish community energy projects throughout life time of the county development plan https://www.research.manchester.ac.uk/portal/en/publications/natural-gas-and-climate-change(c 82adf1f-17fd-4842-abeb-f16c4ab83605).html {i} https://www.nature.com/articles/s41586-020-1991-8.epdf?sharing_token=bEN_mAEu1bxPxHgB y2kelNRgN0jAjWel9jnR3ZoTv0NsP7YL6bUMs5U2mb93hxTh3dwZVOOig02DPQ_6gyAu8T93I GbFSkm7oxYv8kRpXfwUi5aOKASo5PGIUhCjwS7S5WllscY93WiY0gSna9wJUJzoSRhayWp4d S5RmgwP8RWgKyZkvof00mx4cc8WKGlhxbqv_UstwGqsWBuTZQ_c8oZf8hBq605ZFFQtqiGw EIY%3D&tracking_referrer=www.nationalgeographic.com {ii} https://www.nationalgeographic.com/science/2020/02/super-potent-methane-in-atmosphere-oil-gas-drilling-ice-cores/ {iii} https://www.nature.com/articles/s41467-018-07999-w {iv} https://www.eia.gov/tools/faqs/faq.php?id=907&t=8 {v} https://www.foodandwaterwatch.org/sites/default/files/rpt_1905_fracking-2019-web_2.pdf {vi} https://www.oireachtas.ie/en/debates/debate/joint_committee_on_climate_action/2019-10-09/2/{vii} https://www.iisd.org/sites/default/files/publications/zombie-energy-climate-benefits-ending-subsidies-fossil-fuel-production.pdf {viii} https://www.artelys.com/wp-content/uploads/2020/01/Artelys-GasSecurityOfSupply-UpdatedAnalysis.pdf{ix} https://www.entsog.eu/sites/default/files/entsog-migration/publications/sos/ENTSOG%20Union%20wide%20SoS%20simulation%20report INV0262-171121.pdf {x} https://www.gasnetworks.ie/corporate/company/our-network/irish-gas-market-overview/The-Irish-Gas-Market-Overview.pdf {xi} https://www.carbonbrief.org/analysis-half-uks-electricity-to-be-renewable-by-2025 {xii} https://www.e3g.org/publications/more-security-lower-cost-a-smarter-approach-to-gas-infrastruct ure-in-europe/{xiii} https://link.springer.com/article/10.1007/s11027-019-09881-6%3F_{xiv} https://dbei.gov.ie/en/Publications/Publication-files/Government-Statement-Data-Centres-Enterprise-Strategy.pdf {xv} http://www.eirgridgroup.com/site-files/library/EirGrid/EirGrid-Tomorrows-Energy-Scenarios-Report-2017.pdf {xvi} http://iae.ie/wp-content/uploads/2019/08/Data-Centres-July-2019.pdf {xvii} https://www.irishtimes.com/business/technology/net-results-data-centres-need-to-power-down-their-energy-requirements-1.3561745 {xviii} https://www.theguardian.com/environment/2017/dec/11/tsunami-of-data-could-consume-fifth-global-electricity-by-2025 {xix} https://dbei.gov.ie/en/Publications/Publication-files/Government-Statement-Data-Centres-Enterprise-Strategy.pdf {xx} https://www.irishtimes.com/business/energy-and-resources/data-centre-demand-to-lead-to-high er-energy-prices-1.3581998 {xxi} https://www.irishexaminer.com/business/arid-30917493.html {xxii} https://www.datacenterdynamics.com/en/analysis/how-data-centers-pay-for-renewable-energy/ {xxiii} https://www.seai.ie/data-and-insights/seai-statistics/key-statistics/renewables/ {xxiv} https://ramboll.com/projects/rdk/unprecedented-data-centre-surplus-heat-recovery {xxv} Arnstein, S. R. (1969). A ladder of citizen participation. *Journal of the American Institute of planners*, 35(4), 216-224.{xxvi} Olsen, E. (2016) Renewable energy: public acceptance and citizens' financial participation. Elgar Encyclopaedia of Environmental Law. {xxvii} https://www.edinburghsolar.coop/about-us/ {xxviii]